106 research outputs found

    Absence of DNA Polymerase η Reveals Targeting of C Mutations on the Nontranscribed Strand in Immunoglobulin Switch Regions

    Get PDF
    Activation-induced cytosine deaminase preferentially deaminates C in DNA on the nontranscribed strand in vitro, which theoretically should produce a large increase in mutations of C during hypermutation of immunoglobulin genes. However, a bias for C mutations has not been observed among the mutations in variable genes. Therefore, we examined mutations in the μ and γ switch regions, which can form stable secondary structures, to look for C mutations. To further simplify the pattern, mutations were studied in the absence of DNA polymerase (pol) η, which may produce substitutions of nucleotides downstream of C. DNA from lymphocytes of patients with xeroderma pigmentosum variant (XP-V) disease, whose polymerase η is defective, had the same frequency of switching to all four γ isotypes and hypermutation in μ-γ switch sites (0.5% mutations per basepair) as control subjects. There were fewer mutations of A and T bases in the XP-V clones, similar to variable gene mutations from these patients, which confirms that polymerase η produces substitutions opposite A and T. Most importantly, the absence of polymerase η revealed an increase in C mutations on the nontranscribed strand. This data shows for the first time that C is preferentially mutated in vivo and pol η generates hypermutation in the μ and γ switch regions

    Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations

    Get PDF
    We report generation of induced pluripotent stem cell (iPSC) lines from ten Parkinson's disease (PD) patients carrying SNCA, PARK2, LRRK2, and GBA mutations, and one age-matched control. After validation of pluripotency, long-term genome stability, and integration-free reprogramming, eight of these lines (one of each SNCA, LRRK2 and GBA, four PARK2 lines, and the control) were differentiated into neural stem cells (NSC) and subsequently to dopaminergic cultures. We did not observe significant differences in the timeline of neural induction and NSC derivation between the patient and control line, nor amongst the patient lines, although we report considerable variability in the efficiency of dopaminergic differentiation among patient lines. We performed whole genome expression analyses of the lines at each stage of differentiation (fibroblast, iPSC, NSC, and dopaminergic culture) in an attempt to identify alterations by large-scale evaluation. While gene expression profiling clearly distinguished cells at different stages of differentiation, no mutation-specific clustering or difference was observed, though consistent changes in patient lines were detected in genes associated mitochondrial biology. We further examined gene expression in a stress model (MPTP-induced dopaminergic neuronal death) using two clones from the SNCA triplication line, and detected changes in genes associated with mitophagy. Our data suggested that even a well-characterized line of a monogenic disease may not be sufficient to determine the cause or mechanism of the disease, and highlights the need to use more focused strategies for large-scale data analysis

    Comparison of the gene expression profile of undifferentiated human embryonic stem cell lines and differentiating embryoid bodies

    Get PDF
    BACKGROUND: The identification of molecular pathways of differentiation of embryonic stem cells (hESC) is critical for the development of stem cell based medical therapies. In order to identify biomarkers and potential regulators of the process of differentiation, a high quality microarray containing 16,659 seventy base pair oligonucleotides was used to compare gene expression profiles of undifferentiated hESC lines and differentiating embryoid bodies. RESULTS: Previously identified "stemness" genes in undifferentiated hESC lines showed down modulation in differentiated cells while expression of several genes was induced as cells differentiated. In addition, a subset of 194 genes showed overexpression of greater than ≥ 3 folds in human embryoid bodies (hEB). These included 37 novel and 157 known genes. Gene expression was validated by a variety of techniques including another large scale array, reverse transcription polymerase chain reaction, focused cDNA microarrays, massively parallel signature sequencing (MPSS) analysis and immunocytochemisty. Several novel hEB specific expressed sequence tags (ESTs) were mapped to the human genome database and their expression profile characterized. A hierarchical clustering analysis clearly depicted a distinct difference in gene expression profile among undifferentiated and differentiated hESC and confirmed that microarray analysis could readily distinguish them. CONCLUSION: These results present a detailed characterization of a unique set of genes, which can be used to assess the hESC differentiation

    A large-scale proteomic analysis of human embryonic stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Much of our current knowledge of the molecular expression profile of human embryonic stem cells (hESCs) is based on transcriptional approaches. These analyses are only partly predictive of protein expression however, and do not shed light on post-translational regulation, leaving a large gap in our knowledge of the biology of pluripotent stem cells.</p> <p>Results</p> <p>Here we describe the use of two large-scale western blot assays to identify over 600 proteins expressed in undifferentiated hESCs, and highlight over 40 examples of multiple gel mobility variants, which are suspected protein isoforms and/or post-translational modifications. Twenty-two phosphorylation events in cell signaling molecules, as well as potential new markers of undifferentiated hESCs were also identified. We confirmed the expression of a subset of the identified proteins by immunofluorescence and correlated the expression of transcript and protein for key molecules in active signaling pathways in hESCs. These analyses also indicated that hESCs exhibit several features of polarized epithelia, including expression of tight junction proteins.</p> <p>Conclusion</p> <p>Our approach complements proteomic and transcriptional analysis to provide unique information on human pluripotent stem cells, and is a framework for the continued analyses of self-renewal.</p

    Genome wide profiling of human embryonic stem cells (hESCs), their derivatives and embryonal carcinoma cells to develop base profiles of U.S. Federal government approved hESC lines

    Get PDF
    BACKGROUND: In order to compare the gene expression profiles of human embryonic stem cell (hESC) lines and their differentiated progeny and to monitor feeder contaminations, we have examined gene expression in seven hESC lines and human fibroblast feeder cells using Illumina(® )bead arrays that contain probes for 24,131 transcript probes. RESULTS: A total of 48 different samples (including duplicates) grown in multiple laboratories under different conditions were analyzed and pairwise comparisons were performed in all groups. Hierarchical clustering showed that blinded duplicates were correctly identified as the closest related samples. hESC lines clustered together irrespective of the laboratory in which they were maintained. hESCs could be readily distinguished from embryoid bodies (EB) differentiated from them and the karyotypically abnormal hESC line BG01V. The embryonal carcinoma (EC) line NTera2 is a useful model for evaluating characteristics of hESCs. Expression of subsets of individual genes was validated by comparing with published databases, MPSS (Massively Parallel Signature Sequencing) libraries, and parallel analysis by microarray and RT-PCR. CONCLUSION: we show that Illumina's bead array platform is a reliable, reproducible and robust method for developing base global profiles of cells and identifying similarities and differences in large number of samples

    Identification by Automated Screening of a Small Molecule that Selectively Eliminates Neural Stem Cells Derived from hESCs but Not Dopamine Neurons

    Get PDF
    BACKGROUND:We have previously described fundamental differences in the biology of stem cells as compared to other dividing cell populations. We reasoned therefore that a differential screen using US Food and Drug Administration (FDA)-approved compounds may identify either selective survival factors or specific toxins and may be useful for the therapeutically-driven manufacturing of cells in vitro and possibly in vivo. METHODOLOGY/PRINCIPAL FINDINGS:In this study we report on optimized methods for feeder-free culture of hESCs and hESC-derived neural stem cells (NSCs) to facilitate automated screening. We show that we are able to measure ATP as an indicator of metabolic activity in an automated screening assay. With this optimized platform we screened a collection of FDA-approved drugs to identify compounds that have differential toxicity to hESCs and their neural derivatives. Nine compounds were identified to be specifically toxic for NSCs to a greater extent than for hESCs. Six of these initial hits were retested and verified by large-scale cell culture to determine dose-responsive NSC toxicity. One of the compounds retested, amiodarone HCL, was further tested for possible effects on postmitotic neurons, a likely target for transplant therapy. Amiodarone HCL was found to be selectively toxic to NSCs but not to differentiated neurons or glial cells. Treated and untreated NSCs and neurons were then interrogated with global gene expression analysis to explore the mechanisms of action of amiodarone HCl. The gene expression analysis suggests that activation of cell-type specific cationic channels may underlie the toxicity of the drug. CONCLUSIONS/SIGNIFICANCE:In conclusion, we have developed a screening strategy that allows us to rapidly identify clinically approved drugs for use in a Chemistry, Manufacture and Control protocol that can be safely used to deplete unwanted contaminating precursor cells from a differentiated cell product. Our results also suggest that such a strategy is rich in the potential of identifying lineage specific reagents and provides additional evidence for the utility of stem cells in screening and discovery paradigms

    Gene Expression Profile of Neuronal Progenitor Cells Derived from hESCs: Activation of Chromosome 11p15.5 and Comparison to Human Dopaminergic Neurons

    Get PDF
    BACKGROUND: We initiated differentiation of human embryonic stem cells (hESCs) into dopamine neurons, obtained a purified population of neuronal precursor cells by cell sorting, and determined patterns of gene transcription. METHODOLOGY: Dopaminergic differentiation of hESCs was initiated by culturing hESCs with a feeder layer of PA6 cells. Differentiating cells were then sorted to obtain a pure population of PSA-NCAM-expressing neuronal precursors, which were then analyzed for gene expression using Massive Parallel Signature Sequencing (MPSS). Individual genes as well as regions of the genome which were activated were determined. PRINCIPAL FINDINGS: A number of genes known to be involved in the specification of dopaminergic neurons, including MSX1, CDKN1C, Pitx1 and Pitx2, as well as several novel genes not previously associated with dopaminergic differentiation, were expressed. Notably, we found that a specific region of the genome located on chromosome 11p15.5 was highly activated. This region contains several genes which have previously been associated with the function of dopaminergic neurons, including the gene for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, IGF2, and CDKN1C, which cooperates with Nurr1 in directing the differentiation of dopaminergic neurons. Other genes in this region not previously recognized as being involved in the functions of dopaminergic neurons were also activated, including H19, TSSC4, and HBG2. IGF2 and CDKN1C were also found to be highly expressed in mature human TH-positive dopamine neurons isolated from human brain samples by laser capture. CONCLUSIONS: The present data suggest that the H19-IGF2 imprinting region on chromosome 11p15.5 is involved in the process through which undifferentiated cells are specified to become neuronal precursors and/or dopaminergic neurons

    DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    Get PDF
    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use
    corecore